$i \operatorname{erfc} z$ and $i^2 \operatorname{erfc} z$ correct to 6 significant figures (7 s.f. for z > 1) using single precision on a computer with word length of 8 decimal places, for all z for which e^{-z^2} can be calculated correctly. To obtain greater accuracy, it is necessary either to use double precision or to use more than two different expansions for each function. From Gautschi's formula [2] for the number of terms required for calculation by backward recurrence, we see that that method will be better (for 7 s.f. accuracy) if all the z's of interest are greater than about 2.5. The advantage accruing from the use of Chebyshev approximations would be still greater for multiple-precision calculations of very high accuracy.

Battelle Memorial Institute Columbus, Ohio

1. M. ABRAMOWITZ & I. A. STEGUN, (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964; reprint, 1965. MR 29 Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964; reprint, 1965. MR 29 #4914; MR 31 #1400.
2. W. GAUTSCHI, "Recursive computation of the repeated integrals of the error function," Math. Comp., v. 15, 1961, pp. 227-232. MR 24 #B2113.
3. W. R. WILCOX, "Asymptotic computation of the repeated integrals of the error function complement," Math. Comp., v. 18, 1964, pp. 98-105. MR 28 #1327.
4. C. W. CLENSHAW, "The numerical solution of linear differential equations in Chebyshev series," Proc. Cambridge Philos. Soc., v. 53, 1957, pp. 134-149. MR 18, 516.
5. J. L. FIELDS & J. WIMP, "Expansions of hypergeometric functions in hypergeometric functions," Math. Comp., v. 15, 1961, pp. 390-395. MR 23 #A3289.
6. J. WIMP & Y. L. LUKE, "Expansion formulas for generalized hypergeometric functions," Rend. Circ. Mat. Palermo, 2, v. 11, 1962, pp. 351-366. MR 29 #3681.
7. Y. L. LUKE & J. WIMP, "Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray," Math. Comp., v. 17, 1963, pp. 395-404. MR 28 #255.

An Integral Representation for the Modified Bessel Function of the Third Kind. Computable for Large, Imaginary Order

By James D. Lear and James E. Sturm

The one-dimensional Schroedinger equation describing the quantum-mechanical motion of a particle of total energy E and mass μ in a potential field of the form:

$$V = B \exp(-r/a) \quad \text{for } r > 0$$
$$V = \infty \qquad \text{for } r < 0$$

has, as time-independent solutions, the functions

$$\left(\frac{\nu \sinh \pi \nu}{\pi}\right)^{1/2} K_{i\nu}(z)$$

where $\nu = 2a(2\mu E/\hbar^2)^{1/2}$, $z = 2aBe^{-r/2a}$, $K_{i\nu}(z)$ is the modified Bessel function of the third kind, and the normalization is to unit amplitude of the asymptotic (r increasing) solution [1]. In attempting to compute values for $K_{i\nu}(z)$ through use of the representation:

496

Received April 7, 1966.

THE MODIFIED BESSEL FUNCTION OF THE THIRD KIND

(1)
$$K_{i\nu}(z) = \int_0^\infty \exp\left[-z\cosh\phi\right]\cos\nu\phi d\phi$$

evaluated by Simpson's rule on a digital computer, we found that computational precision was quickly lost for $\nu > 15$ and ν/z around or exceeding unity. The reason for this is evident when one considers the fact that, while $K_{i\nu}(z)$ has a maximum amplitude of the order $(\pi/\nu \sinh \pi \nu)^{1/2}$, the maximum amplitude of the integrand in (1) is independent of ν . Hence, as ν increases, the accuracy requirement for the integration increases and eventually exceeds that afforded by the word sizes of most electronic computing machines. Below is given a simple generalization of (1) by which the excessive accuracy requirement can be replaced by an increase in the time required for the numerical integration.

We note that $K_{i\nu}(z)$ is a real function related to the Hankel function of the first kind via:

(2)
$$K_{i\nu}(z) = \frac{\pi}{2} \exp\left[\pi i (1+i\nu)/2\right] H_{i\nu}^{(1)}(iz) .$$

Beginning with the integral representation for the Hankel function:

(3)
$$H_{i\nu}^{(1)}(iz) = \frac{1}{\pi} \int_{\text{path}} \exp\left[-z \cos \phi - \nu(\phi - \pi/2)\right] d\phi$$

where the path in the complex ϕ plane extends from $i\infty$ to $-i\infty$ within the strip $|\text{Re }\phi| < \pi/2$, we let $w = u + iv = -i\phi$, reverse the w plane path, and multiply the resulting expression by $-(\pi/2) \exp[\pi i(1+i\nu)/2]$ to obtain, considering (2):

(4)
$$K_{i\nu}(z) = \frac{1}{2} \int_{-\infty+ib}^{\infty+ia} \exp\left[-z \cosh w - i\nu w\right] dw$$
, $|a|, |b| < \pi/2$.

With w = u + iv, (4) can be expressed as:

(5)
$$K_{i\nu}(z) = \frac{1}{2} \int_{-\infty+ib}^{\infty+ia} e^{\nu v} \exp\left[-z \cosh u \cos v\right] \cos\left(z \sinh u \sin v + \nu u\right) dw$$

where we have used the fact that $K_{i\nu}(z)$ is real to eliminate the imaginary part of (4). If we now let v be constant along the integration path, we obtain:

(6)
$$K_{i\nu}(z) = \int_0^\infty e^{\nu v} e^{-z \cosh u \cos v} \cos (z \sinh u \sin v + \nu u) \, du$$

which, for v = 0, reduces to the standard definition.

The advantage of (6) comes in the dependence of the integrand amplitude on v. By adjusting v to be a negative constant (greater than $-\pi/2$), the large fluctuations of the integrand can be suppressed to tolerable magnitudes. The slower convergence of (6), while not as serious a problem as the former requirement of huge word sizes, will limit the applicability of the representation to a range of ν within which error accumulation in the integration can be held within tolerable limits.

The table given below shows how the accuracy of an evaluation depends on the choice of v for constant $(\pm 1\%)$ values of $\cos v \cosh B$. B is the upper limit on u in the integration and D is the size of the Simpson's rule increment in u, both parameters being chosen to give a 6-significant-figure accuracy limit for v approaching $-\pi/2$.

$Value imes 10^{34}$	Evaluation of $K_{i50}(20)$		
	v	В	D
723828	-1.00	$\overline{3.65}$.0025
.269938	-1.20	4.00	"
.274077	-1.40	4.80	"
.274078	-1.48	5.45	"
"	-1.50	5.60	.005
"	-1.52	6.00	"
"	-1.54	6.50	"

Acknowledgement. This work was supported by the Atomic Energy Commission under Contract No. AT(30-1)-2772 which included access to the CDC-6600 facility at the Courant Institute for Mathematical Sciences at New York University.

Lehigh University Bethlehem, Pennsylvania

E. I. Du Pont Nemours Wilmington, Delaware 19898

1. J. M. JACKSON & N. F. MOTT, "Energy exchange between inert gas atoms and a solid surface," Proc. Roy. Soc. London Ser. A, v. 137, 1932, pp. 703-717.

Mixed Algebraic-Exponential Interpolation Using Finite Differences

By J. W. Layman

The use of finite differences in exponential polynomial interpolation was introduced in [1], where an algorithm was developed which triangularizes the system of equations that determines the coefficients in the interpolating exponential polynomial. In the present note we show that a similar finite-difference algorithm also exists for interpolation by a mixed algebraic-exponential polynomial of the form

(1)
$$P(x) = \sum_{n=1}^{N} \sum_{m=0}^{m_n} a_{nm} x^{(m)} n^2$$

for $x = 0, 1, 2, \dots, \sum_{n=1}^{N} (m_n + 1) - 1$. The symbol $x^{(m)}$ represents the factorial power function $x(x - 1) \cdots (x - m + 1)$.

We require the basic difference operations E and Δ and, in addition, the diagonal difference S defined by $Sf(x) = \Delta^x f(0)$. The diagonal difference is more precisely defined in [1] and certain difficulties in interpretation are resolved there. These arise when taking higher-order diagonal differences by iteration, $S^n f(x) = SS^{n-1}f(x)$.

The following properties and formulas involving the diagonal-difference opera-

Received April 28, 1966. Revised December 5, 1966.